QI 04, Seminar 1

Seminar overview.

Classical information units and processing.
Information science: The big picture.

Qubit state space.

Simple qubit gates.

Black box problems.

QUANTUM INFORMATION PROCESSING, SCIENCE OF - The theoretical,
experimental and technological areas covering the use of quantum
mechanics for communication and computation.

E. “Manny” Knill: knill@boulder.nist.gov
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Seminar overview

Goal: To learn the basic concepts and tools of quantum information,
appreciate its power and limitations, and understand the issues involved in
realizing it.

Prerequsites: Linear algebra, polynomials, binary logic, probability.
Structure: 15 seminars, each consisting of a 50min lecture, followed by
discussions and/or problem solving.

Grading: Based on participation—see hand-out. Required meeting with me
In the second half of the semester.

Assignments: Problems to be handed out. Errors in solutions handed in
have no effect on grade.

Reading: References provided in handout, limited number of hard copies
of LAScience issue.

Office hours: CU: Wednesdays after class, 1pm-3pm, S315 or by
appointment. NIST: Thursdays after class, 2:15pm-3:15pm, Bldg 1, Rm
4049, or drop in any time | am there.

Sign-up: Please provide your email, if possible. Let me know if it is difficult
for you to use PDF and PS attachments.
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {0, 1}.
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {0, 1}.
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- Physical examples:
Mag. domain on a hard disk, state of mag. moment.
o is “right”, 1 is “left” magnetization.
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {0, 1}.

® o
¢ 1

- Physical examples:

Mag. domain on a hard disk, state of mag. moment.

o is “right”, 1 is “left” magnetization.
Location on a piece of paper, ink pattern.
oifitlookslike o ,1ifitlookslike 1 .
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {0, 1}.
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- Physical examples:

Mag. domain on a hard disk, state of mag. moment.

o is “right”, 1 is “left” magnetization.
Location on a piece of paper, ink pattern.
o if it looks like 0 , 1 if it looks like 1 .

Multiple units’ state space: By concatenation of states.
Two bits’ state space: {00,01,10,11}.
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Classical Information Units

The classical information unit is the bit.
The bit is a system with state space {o,1}.

® o
¢ 1

- Physical examples:
Mag. domain on a hard disk, state of mag. moment.
o is “right”, 1 is “left” magnetization.
Location on a piece of paper, ink pattern.
o if it looks like 0 , 1 if it looks like 1 .

Multiple units’ state space: By concatenation of states.
Two bits’ state space: {00,01,10,11}.
How many states do n bits have? Answer: 2",
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Classical Gate Networks

A one-bit network.
Time e
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A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 —o.

Reset to o.
0 1 0
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

Reset to o.
0 1 0

o A three-bit network.
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

Reset to o.
0 1 0

o A three-bit network.
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

Reset to o.
0 1 0

o A three-bit network.

000 100
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

Reset to o.
0 1 0

o A three-bit network. Controlled-not { 00 — 00,01 — 01,

10 — 11,11 — 10.

000 100

3
«—|Top|Bot|—|—|TOC



Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

D_ Reset to :. =1>

o A three-bit network. Controlled-not { 00 — 00,01 — 01,

10 — ll 11 — lO
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

D_ Reset to :. =1>

o A three-bit network. Controlled-not { 00 — 00,01 — o1,

10 — ll 11 — 10.
Nand 00 — 01
F%
OF_

01 — 01,
10 — 11’
_0>__
000

11 — 10.
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Classical Gate Networks

o A one-bit network.

Time e

Prepare in state o.
Flipo— 1,1 — o.

D_ Reset to :. =1>

Nand 00 — 01
11 — 10.
OF_

o A three-bit network. Controlled-not { 00 — 00,01 — o1,
01l — 01,

10 — ll 11 — lO
000
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Classical Programming

Random access
machine
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Memory
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Classical Programming

Random access
machine

N\

Memory

L <— O
e —

CPU
for k=1to v

G

Program
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Classical Programming

Random access
machine

N\

Memory

L <— O

for k=1to v
_

CPU
r—x+k

|
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Classical Programming

Random access
machine

N\

Memory

_
CPU

|

& <— O

for k=1to v

r<—x+k

Program

If x > 2k then

4
—|Top|Bot|—|—|TOC



Classical Programming

Random access
machine

N\

Memory

=0 Program

for k=1to v

r<—x+k

If x > 2k then
_

CPU
x — floor (sqrt (x))

|
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Classical Programming

Random access
machine

N\

Memory

_
CPU

=0 Program

for k=1to v

~

r—x+k
If x > 2k then

x — floor (sqrt (x))

Capabillities added:

Loops, iteration,
recursion.

Universality:
Anything
“effective”

can be computed
by a RAM.
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Guide to Information Processing
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Quantum Information Science

Complexity

Information
ication Theory
Quantum physics Physical
Realizations

Classical physics
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Quantum Information Science

Complexity

Information

ication [ Theory

Quantum physics Physical
. . Realizations
Classical physics

o Motivation. o |
= Quantum cryptography. = Quantum physics simulation.
= Quantum factoring. = Unstructured search.
... Quantum control, complexity theory, ...
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Quantum Information Science

Complexity

Information

ication [ Theory

Quantum physics

Physical
. : Realizations
Classical physics

= Quantum cryptography. = Quantum physics simulation.
= Quantum factoring. = Unstructured search.

... Quantum control, complexity theory, ...
» Practical relevance.

e QIP is physically realizable in principle:
Accuracy Threshold Theorem: If the error rate is sufficiently low,

o Motivation.

then it is possible to efficiently process quantum information
arbitrarily accurately.
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The Quantum Bit

e The qubit: A system with (pure) state space all
superpositions of two logical states |o) and |1):

{ alo) + Bla) with [a|* + |B]* =1}
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The Quantum Bit

e The qubit: A system with (pure) state space all
superpositions of two logical states |o) and |1):

{ alo) + Bla) with [a|* + |B]* =1}

e Examples:

S-S
S {[SSH N o)

0),

0

0

o

) +
) +
) +

1),
L),

),
).
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The Quantum Bit

e The qubit: A system with (pure) state space all
superpositions of two logical states |o) and |1):

{ alo) + Blx) with [ + |B]* =1}
e Examples: o), |1),
o) + 1),
o) + 1),
o) + £1).
N

S-S
S {[SSH N o)

@

-The ket: ¥ €

)

system | ==~~~ [system
delimiter state symbol delimiter
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The Quantum Bit

e The qubit: A system with (pure) state space all
superpositions of two logical states |o) and |1):

{ alo) + Blx) with [af* + |B]* =1 }
e Examples: o), |1),
o) + 1),
o) + 1),
o) + £1).
N

S-S
U N )

@

-The ket: ¥ €

w > For example: [¢) = 2Jo) + 1)
system | ==~~~ [system
delimiter| Stt€ symbol delimiter
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State Space Representations

Vectors.

alo) + ) - ()
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State Space Representations

Vectors.
afo) + 1) o (“)
5
Bloch sphere. 0
Classical:
1
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State Space Representations

o \ectors.

alo) + 6la) - ()

e Bloch sphere.

Quantum:
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State Space Representations

Vectors.

alo) + ) - ()

Bloch sphere. e
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State Space Representations

Vectors.
(@
alo) + 1) (ﬁ)
Bloch sphere. e
v
\
Y

alo) + B|1) = e~/2cos(6/2)|0) + e**/?sin(0/2)[1)
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State Space Representations

Vectors.
8
alo) + 1) (ﬁ)
Bloch sphere. e
v
\
Y

alo) + B|1) = e~/2cos(6/2)|0) + e**/?sin(0/2)[1)

Global phase:
alo) + B]1) and e*?alo) + e'?B|1) are the same state.
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Photonic Qubit

e Photonic qubit: One photon in a superposition of two
modes.
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modes.

o) 1)
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Photonic Qubit

e Photonic qubit: One photon in a superposition of two
modes.

o) 1)

Photonic qubits are usually “flying” qubits.

Making a superposition state:

I
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e Photonic qubit: One photon in a superposition of two
modes.
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Photonic qubits are usually “flying” qubits.
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Spin 1/2 Qubit

e Spin 1/2 in oriented space: One particle in a superposition
of the states “up” (|T)) and “down” (| )).

)
-

~ a4
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Spin 1/2 Qubit

e Spin 1/2 in oriented space: One particle in a superposition
of the states “up” (|T)) and “down” (| )).

\
A
4
e _”

Orientation of magnetic moment (average) corresponds to the state Iin
the Bloch sphere.
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the Bloch sphere.

Examples include nuclear spins of 13C and ' H.

These are observable by nuclear magnetic resonance.
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One-Qubit Gates |

State preparation, prep(0), prep(1).

Dl 1 o 1)
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One-Qubit Gates |

State preparation, prep(0), prep(1).

D) 1 o [1)

Bit flip, not. . )
alo) 4 BJ1) al1) + Blo)

o P ¢
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State preparation, prep(0), prep(1

Bit flip, not.
alo) 4 BJ1)

(

One-Qubit Gates |

D)

\

oz) e P

).

1 o [1)

[ al1) + Slo)

b

(10) ()= (0

\
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One-Qubit Gates |

State preparation, prep(0), prep(1).

D)
Bit flip, not.
ajo) + BJ1)
() T
b

) (

/ \

Sign flip, sgn.
ajo) 4 BJ1)

) (

1 o [1)

CHE-¢)

alo) — fl1)
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One-Qubit Gates |

State preparation, prep(0), prep(1).

D)

Bit flip, not.
alo) 4 BJ1)

\

b

/

Sign flip, sgn.
ajo) 4 BJ1)

\

b

G) T

1 o [1)

[ al1) + Slo)

G) T

(10) ()= (0

alo) — fl1)

\

/

o 5) ()= ()

\
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One-Qubit Gates |

State preparation, prep(0), prep(1).

Dl

Bit flip, not.
alo) 4 B[1)

\

B

/

Sign flip, sgn.
ajo) 4 BJ1)

\

b

/

G) T

1 o 1)

[ al1) + Slo)

G) T

(10) ()= (0

alo) — fl1)

\

/

0 5) ()= (%)

\

So far: Cannot generate proper superpositions.
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One-Qubit Gates Il
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One-Qubit Gates Il

Hadamard.

84

g

)

\

o H
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One-Qubit Gates Il

Hadamarci. (
alo) + 1) Z5(a+ Blo) + s(a — B)l1)

() T 0 ) 6) = 60)
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One-Qubit Gates Il

Hadamarci. (
alo) + 1) Z5(a+ Blo) + s(a — B)l1)

() T 0 ) 6) = 60)

/ \

o Example: Prepare the state \/%(|o> +]1)).

9_
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() T 0 ) 6) = 60)

/ \

y

o Example: Prepare the state \/%(|o> +]1)).
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One-Qubit Gates Il
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() T 0 ) 6) = 60)

/ \

y

o Example: Prepare the state \/%(|o> +]1)).
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One-Qubit Gates Il

Hadamarci.
alo) + 1) Z5(a+ Blo) + s(a — B)l1)

() T 0 ) 6) = 60)

/ \

y

o Example: Prepare the state \/%(|o> +]1)).

o-—{i—

o |Zs(lo) + 1))
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One-Qubit Gates Il

Hadamarci.
alo) + 1) Z5(a+ Blo) + s(a — B)l1)

() T 0 ) 6) = 60)

/ \

y

o Example: Prepare the state \/%(|o> +]1)).
- {-—

o (o) + 1))
prep(o) . had
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One-Qubit Gates Il

Hadamard.
) 4
ajo) + fl1) %(oz + B)o) + —5(a —

B R BHORATE MY A

/

o Example: Prepare the state \/%(|o> +]1)).
0 —
S

o (o) + 1))

prep(o) . had

With the gates so far, can we prepare \/%(|o> + 4|1))?

12



Read-out

e Read-out reduces a state destructively to classical
iInformation.
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

o) {b=o
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

1) [b=1
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

b =0 with probability |a|?,
alo) + B1) { b =1 with probability |3]°.
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

— 0 with probability |a/|?,
alo) + [|1) { b =1 with probability |3]°.

e Example:

0 H J O
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

— 0 with probability |a/|?,
alo) + [|1) { b =1 with probability |3]°.

e Example:

= i}~

3l + 5l
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Read-out

e Read-out reduces a state destructively to classical

Information.

alo) + A1) {

e Example:

3l + 5l

= # e}~

y

\

= 0 with probability |a/|?,
= 1 with probability |3]?.

o with probability (

2
= 5.

Sl Sl

)2:.5,
)

1 with probability (
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Read-out

e Read-out reduces a state destructively to classical
iInformation.

— 0 with probability |a/|?,
alo) + Bl1) { b =1 with probability |3]°.

e Example: r 5
o with probability = .9,
1

= 9.
Z5l0) + /1)

Sl Sl

1 with probability (

\

prep(o) . had . meas(Z—b)
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“Black Box” Problems

Classical:

e Given: Unknown one-bit device, a “black box”. _.
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“Black Box” Problems

Classical:

e Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.
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“Black Box” Problems

Classical:

e Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.

Problem: Determine which using the device once.
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Classical:

e Given:
Promise:
Problem:

Solution:

“Black Box” Problems

Unknown one-bit device, a “black box". _.

Determine which using the device once.

It either flips the bit or does nothing.

>
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“Black Box” Problems

Classical:

e Given: Unknown one-bit device, a “black box”.
Promise: It either flips the bit or does nothing.

Problem: Determine which using the device once.

Solution: - =a> o : doesn't flip,
3 . 1: flips.
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“Black Box” Problems

Quantum:
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.

Problem: Determine which using the device once.
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Quantum:

e Given:
Promise:
Problem:

Solution:

“Black Box” Problems

Unknown one-qubit device, a “black box”.
It either applies sgn or does nothing.

Determine which using the device once.
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Quantum:

e Given:
Promise:
Problem:

Solution:

“Black Box” Problems

Unknown one-qubit device, a “black box”._.

Determine which using the device once.

It either applies sgn or does nothing.
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:

12(|O> + |1>H—
1:
sgn :

S
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:

S

12(|O> + |1>H—

1 (o) +[1))
sgn : %
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

Solution:

= +|1>_.._'>

Z5(lo) +11))
sgn : (|0> 1))
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

L (11
Solution: (1 —1>

<o>+|l>>—.-

Z5(lo) +11))
sgn : (|0> 1))

Ny
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.

Problem: Determine which using the device once.

Solution: %G _11>
L(lo) +1))
1: o)
{sgn 1)
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.

Problem: Determine which using the device once.

: p (11
Solution: %(1 _1>
(o) + 1)
1: 0)
sgn: |1)
e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies not, sgn, sgn.not

or does nothing.
Problem: Determine which using the device once.
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“Black Box” Problems

Quantum:

e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies sgn or does nothing.

Problem: Determine which using the device once.

: p (11
Solution: %(1 _1>
(o) + 1)
1: 0)
sgn: |1)
e Given: Unknown one-qubit device, a “black box”.
Promise: It either applies not, sgn, sgn.not

or does nothing.

Problem: Determine which using the device once.
- IS this possible?
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